Jump to content
Ornithology Exchange
  • Postdoctoral Fellowship quantifying American black duck reproductive metrics and Canadian boreal forest environmental covariates, USask


    Guest Mitch Weegman
    • Employer: University of Saskatchewan
      Location: Saskatoon, Saskatchewan
      Country: Canada
      Last Date to Apply: 09/30/2022
      Open Until Filled: No

    The Department of Biology at the University of Saskatchewan is seeking a two-year postdoctoral fellow to lead a project focused on quantifying reproductive metrics in American black ducks, with hypothesis tests of environmental drivers on breeding areas. We anticipate the postdoctoral fellow will use machine learning algorithms to retrospectively assess egg-laying, full-term incubation and brood-rearing in black ducks, using GPS and acceleration (ACC) data from tracking devices fitted to individual females. Black ducks nest primarily in the eastern Canadian boreal forest, a large remote region where assessing reproductive success with field crews is not practical. While machine learning algorithms have been widely used to classify behaviours from ACC data, they have not been customized for reproductive metrics. The postdoctoral fellow also will determine feasibility of environmental covariates in the Canadian boreal forest (e.g., spatial layers for beaver ponds, commercial logging) for hypothesis tests about the reproductive period. We have deployed 200 devices and anticipate another 300 devices will be deployed in the next two years to collect information about the reproductive period. The devices collect GPS information every hour and ACC information every 10 minutes. The postdoctoral fellow will work closely with a PhD student studying the full annual cycle for black ducks.

    There are other projects in our group using similar GPS-ACC devices on Atlantic brant and greater white-fronted geese to assess the reproductive period in the context of annual cycle movements, behaviour and habitat use. The postdoctoral fellow will work with graduate students on those projects to develop best practices for using machine learning to identify reproductive metrics. We anticipate broad applicability of results for studying migratory birds that are cryptic or nest in inaccessible areas. In addition, there will be opportunities to collaborate on and lead other projects linking population and individual processes in migratory birds in the Weegman lab.

    This project is an international partnership among the Black Duck Joint Venture, Canadian Wildlife Service, University of Saskatchewan, US Fish and Wildlife Service and member states of the Atlantic Flyway (Connecticut, Maine, Maryland, Massachusetts, Delaware, New Jersey, New York, Pennsylvania, Virginia).

    Minimum qualifications:

    Ph.D. in statistics, wildlife ecology or closely related field

    Skills in Program R

    Demonstrated excellence in verbal and written communication

    Ability to work independently and as part of a research team

     

    Preferred qualifications: 

    Skills in JAGS

    Experience forming and running machine learning algorithms, demographic and animal movement models

    Knowledge and experience in avian ecology

     

    Salary and benefits:  Approximately $60,000 Canadian per year plus benefits

    Start date: January 2023

    Last date to apply: 30 Sept 2022

    To be considered for this position, please send a cover letter, curriculum vitae, research statement and contact information for three references to Dr. Mitch Weegman (mitch.weegman@usask.ca).




    User Feedback

    Recommended Comments

    There are no comments to display.



    Join the conversation

    You can post now and register later. If you have an account, sign in now to post with your account.
    Note: Your post will require moderator approval before it will be visible.

    Guest
    Add a comment...

    ×   Pasted as rich text.   Restore formatting

      Only 75 emoji are allowed.

    ×   Your link has been automatically embedded.   Display as a link instead

    ×   Your previous content has been restored.   Clear editor

    ×   You cannot paste images directly. Upload or insert images from URL.


  • Help

    You can edit or delete jobs that were posted under your account.

    You are not currently signed in. Sign In to edit or delete any of your job posts.

    If you posted a job as a guest (you were not signed in), then staff will be happy to move the job post to your account or make any changes on your behalf.

    If you need help with anything, post in the Jobs Board Support forum for fastest service or Contact Us.

    You must be signed in to view the Jobs Board Support forum. Sign In.

×
×
  • Create New...