Jump to content
Ornithology Exchange

Advances in Spatial Analysis of Multivariate Ecological Data: Theory and Practice


Recommended Posts

We still have 4 places left on the following course! “Advances in Spatial Analysis of Multivariate Ecological Data: Theory and Practice” http://prstatistics.com/course/advances-in-spatial-analysis-of-multivariate- ecological-data-theory-and-practice/ This course is being delivered by Prof. Pierre Legendre who is a leading expert in numerical ecology and author of the book titled ‘Numerical ecology’ This course will run from 11th – 15th July 2016 at SCENE Field Station, Loch Lomond national park, Scotland. The course will describe recent methods (concepts and R tools) that can be used to analyse spatial patterns in community ecology. The umbrella concept of the course is beta diversity, which is the spatial variation of communities. These methods are applicable to all types of communities (bacteria, plants, animals) sampled along transects, regular grids or irregularly distributed sites. The new methods, collectively referred to as spatial eigen-function analysis, are grounded into techniques commonly used by community ecologists, which will be described first: simple ordination (PCA, CA, PCoA), multivariate regression and canonical analysis, permutation tests. The choice of dissimilarities that are appropriate for community composition data will also be discussed. The focal question is to determine how much of the community variation (beta diversity) is due to environmental sorting and to community-based processes, including neutral processes. Recently developed methods to partition beta diversity in different ways will be presented. Extensions will be made to temporal and space-time data. Course content is as follows Day 1 • Introduction to data analysis. • Ordination in reduced space: principal component analysis (PCA), correspondence analysis (CA), principal coordinate analysis (PCoA). • Transformation of species abundance data tables prior to linear analyses. Day 2 • Measures of similarity and distance, especially for community composition data. • Multiple linear regression. R-square, adjusted R-square, AIC, tests of significance. • Polynomial regression. • Partial regression and variation partitioning. Day 3 • Statistical testing by permutation. • Canonical redundancy analysis (RDA) and canonical correspondence analysis (CCA). Multivariate analysis of variance by canonical analysis. • Forward selection of environmental variables in RDA. Day 4 • Origin of spatial structures. • Beta diversity partitioning and LCBD indices • Replacement and richness difference components of beta diversity. Day 5 • Spatial modelling: Multi-scale modelling of the spatial structure of ecological communities: dbMEM, generalized MEM, and AEM methods. • Community surveys through space and time: testing the space-time interaction in repeated surveys. • Additional module depending on time – Is the Mantel test useful for spatial analysis in ecology and genetics? Please email any inquiries to [log in to unmask] or visit our website www.prstatistics.com or to book online http://prstatistics.com/course/advances-in-spatial- analysis-of-multivariate-ecological-data-theory-and-practice/ Please feel free to distribute this material anywhere you feel is suitable Upcoming courses - email for details [log in to unmask] BIOINFORMATICS USING LINUX (August) GENETIC DATA ANALYSIS USING R (August) INTRODUCTION TO BAYESIAN HIERARCHICAL MODELLING (August) INTRODUCTION TO PYTHON FOR BIOLOGISTS (October) LANDSCAPE (POPULATION) GENETIC DATA ANALYSIS USING R (October) APPLIED BAYESIAN MODELLING FOR ECOLOGISTS AND EPIDEMIOLOGISTS (October) PHYLOGENETIC DATA ANALYSIS USING R (October) SPATIAL ANALYSIS OF ECOLOGIC AL DATA USING R (November) ADVANCING IN STATISTICAL MODELLING USING R (December) MODEL BASED MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA USING R (January) ADVANCED PYTHON FOR BIOLOGISTS (February) STABLE ISOTOPE MIXING MODELS (SIAR, SIBER AND MIXSIAR) USING R (February) BIOINFORMATICS FOR GENETICISTS AND BIOLOGISTS(February) Oliver Hooker PR Statistics

 
Link to comment
Share on other sites

Archived

This topic is now archived and is closed to further replies.

×
×
  • Create New...